Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
NPJ Genom Med ; 9(1): 20, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485733

RESUMO

In the era of precision medicine, genome sequencing (GS) has become more affordable and the importance of genomics and multi-omics in clinical care is increasingly being recognized. However, how to scale and effectively implement GS on an institutional level remains a challenge for many. Here, we present Genome First and Ge-Med, two clinical implementation studies focused on identifying the key pillars and processes that are required to make routine GS and predictive genomics a reality in the clinical setting. We describe our experience and lessons learned for a variety of topics including test logistics, patient care processes, data reporting, and infrastructure. Our model of providing clinical care and comprehensive genomic analysis from a single source may be used by other centers with a similar structure to facilitate the implementation of omics-based personalized health concepts in medicine.

2.
Brain ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386308

RESUMO

Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1,500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations, however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESC), including a knock-out and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and Western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR), and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-Seq analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry, and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.

3.
Genes (Basel) ; 15(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275617

RESUMO

The potential of genome sequencing (GS), which allows detection of almost all types of genetic variation across nearly the entire genome of an individual, greatly expands the possibility for diagnosing genetic disorders. The opportunities provided with this single test are enticing to researchers and clinicians worldwide for human genetic research as well as clinical application. Multiple studies have highlighted the advantages of GS for genetic variant discovery, emphasizing its added value for routine clinical use. We have implemented GS as first-line genetic testing for patients with rare diseases. Here, we report on our experiences in establishing GS as a reliable diagnostic method for almost all types of genetic disorders, from validating diagnostic accuracy of sequencing pipelines to clinical implementation in routine practice.


Assuntos
Testes Genéticos , Genoma , Humanos , Testes Genéticos/métodos , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento Completo do Genoma/métodos
4.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853102

RESUMO

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Assuntos
Exoma , Doenças Raras , Humanos , Doenças Raras/genética , Benchmarking , Sequenciamento do Exoma , Testes Genéticos/métodos
6.
J Med Genet ; 61(2): 186-195, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734845

RESUMO

PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.


Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genética
7.
Pancreatology ; 23(8): 957-963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949771

RESUMO

BACKGROUND: Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS: We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS: We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION: We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.


Assuntos
Quimases , Pancreatite Crônica , Humanos , Quimases/genética , Predisposição Genética para Doença , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Fatores de Risco
8.
NPJ Precis Oncol ; 7(1): 106, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864096

RESUMO

A growing number of druggable targets and national initiatives for precision oncology necessitate broad genomic profiling for many cancer patients. Whole exome sequencing (WES) offers unbiased analysis of the entire coding sequence, segmentation-based detection of copy number alterations (CNAs), and accurate determination of complex biomarkers including tumor mutational burden (TMB), homologous recombination repair deficiency (HRD), and microsatellite instability (MSI). To assess the inter-institution variability of clinical WES, we performed a comparative pilot study between German Centers of Personalized Medicine (ZPMs) from five participating institutions. Tumor and matched normal DNA from 30 patients were analyzed using custom sequencing protocols and bioinformatic pipelines. Calling of somatic variants was highly concordant with a positive percentage agreement (PPA) between 91 and 95% and a positive predictive value (PPV) between 82 and 95% compared with a three-institution consensus and full agreement for 16 of 17 druggable targets. Explanations for deviations included low VAF or coverage, differing annotations, and different filter protocols. CNAs showed overall agreement in 76% for the genomic sequence with high wet-lab variability. Complex biomarkers correlated strongly between institutions (HRD: 0.79-1, TMB: 0.97-0.99) and all institutions agreed on microsatellite instability. This study will contribute to the development of quality control frameworks for comprehensive genomic profiling and sheds light onto parameters that require stringent standardization.

9.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796616

RESUMO

MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.


Assuntos
Encefalopatias , Tumor de Células da Granulosa , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Tumor de Células da Granulosa/genética , Mutação , Aneuploidia
10.
EBioMedicine ; 96: 104797, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716236

RESUMO

BACKGROUND: Genomic characterisation has led to an improved understanding of adult melanoma. However, the aetiology of melanoma in children is still unclear and identifying the correct diagnosis and therapeutic strategies remains challenging. METHODS: Exome sequencing of matched tumour-normal pairs from 26 paediatric patients was performed to study the mutational spectrum of melanomas. The cohort was grouped into different categories: spitzoid melanoma (SM), conventional melanoma (CM), and other melanomas (OT). FINDINGS: In all patients with CM (n = 10) germline variants associated with melanoma were found in low to moderate melanoma risk genes: in 8 patients MC1R variants, in 2 patients variants in MITF, PTEN and BRCA2. Somatic BRAF mutations were detected in 60% of CMs, homozygous deletions of CDKN2A in 20%, TERTp mutations in 30%. In the SM group (n = 12), 5 patients carried at least one MC1R variant; somatic BRAF mutations were detected in 8.3%, fusions in 25% of the cases. No SM showed a homozygous CDKN2A deletion nor a TERTp mutation. In 81.8% of the CM/SM cases the UV damage signatures SBS7 and/or DBS1 were detected. The patient with melanoma arising in giant congenital nevus (CNM) demonstrated the characteristic NRAS Q61K mutation. INTERPRETATION: UV-radiation and MC1R germline variants are risk factors in the development of conventional and spitzoid paediatric melanomas. Paediatric CMs share genomic similarities with adult CMs while the SMs differ genetically from the CM group. Consistent genetic characterization of all paediatric melanomas will potentially lead to better subtype differentiation, treatment, and prevention in the future. FUNDING: Found in Acknowledgement.

12.
Eur J Hum Genet ; 31(10): 1139-1146, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507557

RESUMO

The prevalence of pathogenic and likely pathogenic (P/LP) variants in genes associated with cancer predisposition syndromes (CPS) is estimated to be 8-18% for paediatric cancer patients. In more than half of the carriers, the family history is unsuspicious for CPS. Therefore, broad genetic testing could identify germline predisposition in additional children with cancer resulting in important implications for themselves and their families. We thus evaluated clinical trio genome sequencing (TGS) in a cohort of 72 paediatric patients with solid cancers other than retinoblastoma or CNS-tumours. The most prevalent cancer types were sarcoma (n = 26), neuroblastoma (n = 15), and nephroblastoma (n = 10). Overall, P/LP variants in CPS genes were identified in 18.1% of patients (13/72) and P/LP variants in autosomal-dominant CPS genes in 9.7% (7/72). Genetic evaluation would have been recommended for the majority of patients with P/LP variants according to the Jongmans criteria. Four patients (5.6%, 4/72) carried P/LP variants in autosomal-dominant genes known to be associated with their tumour type. With the immediate information on variant inheritance, TGS facilitated the identification of a de novo P/LP in NF1, a gonadosomatic mosaic in WT1 and two pathogenic variants in one patient (DICER1 and PALB2). TGS allows a more detailed characterization of structural variants with base-pair resolution of breakpoints which can be relevant for the interpretation of copy number variants. Altogether, TGS allows comprehensive identification of children with a CPS and supports the individualised clinical management of index patients and high-risk relatives.


Assuntos
Predisposição Genética para Doença , Neoplasias , Humanos , Criança , Mutação em Linhagem Germinativa , Neoplasias/genética , Testes Genéticos/métodos , Genótipo , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
13.
Eur J Neurol ; 30(9): 2854-2858, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271829

RESUMO

BACKGROUND AND PURPOSE: Adult onset neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder with a heterogeneous clinical presentation that can mimic stroke and various forms of dementia. To date, it has been described almost exclusively in Asian individuals. METHODS: This case presentation includes magnetic resonance imaging (MRI) of the neurocranium, histology by skin biopsy, and long-read genome sequencing. RESULTS: A 75-year-old Caucasian female presented with paroxysmal encephalopathy twice within a 14-month period. Brain MRI revealed high-intensity signals at the cerebral corticomedullary junction (diffusion-weighted imaging) and the paravermal area (fluid-attenuated inversion recovery), a typical distribution observed in adult onset NIID. The diagnosis was corroborated by skin biopsy, which demonstrated eosinophilic intranuclear inclusion bodies, and confirmed by long-read genome sequencing, showing an expansion of the GGC repeat in exon 1 of NOTCH2NLC. CONCLUSIONS: Our case proves adult onset NOTCH2NLC-GGC-positive NIID with typical findings on MRI and histology in a Caucasian patient and underscores the need to consider this diagnosis in non-Asian individuals.


Assuntos
Corpos de Inclusão Intranuclear , Doenças Neurodegenerativas , Adulto , Humanos , Feminino , Idoso , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
14.
Front Cell Infect Microbiol ; 13: 1159814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124042

RESUMO

Introduction: Mansonella species are filarial parasites that infect humans worldwide. Although these infections are common, knowledge of the pathology and diversity of the causative species is limited. Furthermore, the lack of sequencing data for Mansonella species, shows that their research is neglected. Apart from Mansonella perstans, a potential new species called Mansonella sp "DEUX" has been identified in Gabon, which is prevalent at high frequencies. We aimed to further determine if Mansonella sp "DEUX" is a genotype of M. perstans, or if these are two sympatric species. Methods: We screened individuals in the area of Fougamou, Gabon for Mansonella mono-infections and generated de novo assemblies from the respective samples. For evolutionary analysis, a phylogenetic tree was reconstructed, and the differences and divergence times are presented. In addition, mitogenomes were generated and phylogenies based on 12S rDNA and cox1 were created. Results: We successfully generated whole genomes for M. perstans and Mansonella sp "DEUX". Phylogenetic analysis based on annotated protein sequences, support the hypothesis of two distinct species. The inferred evolutionary analysis suggested, that M. perstans and Mansonella sp "DEUX" separated around 778,000 years ago. Analysis based on mitochondrial marker genes support our hypothesis of two sympatric human Mansonella species. Discussion: The results presented indicate that Mansonella sp "DEUX" is a new Mansonella species. These findings reflect the neglect of this research topic. And the availability of whole genome data will allow further investigations of these species.


Assuntos
Mansonella , Simpatria , Animais , Humanos , Mansonella/genética , Filogenia , DNA Ribossômico , Sequência de Aminoácidos
15.
J Am Med Inform Assoc ; 30(6): 1179-1189, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080557

RESUMO

OBJECTIVE: The objective was to develop a dataset definition, information model, and FHIR® specification for key data elements contained in a German molecular genomics (MolGen) report to facilitate genomic and phenotype integration in electronic health records. MATERIALS AND METHODS: A dedicated expert group participating in the German Medical Informatics Initiative reviewed information contained in MolGen reports, determined the key elements, and formulated a dataset definition. HL7's Genomics Reporting Implementation Guide (IG) was adopted as a basis for the FHIR® specification which was subjected to a public ballot. In addition, elements in the MolGen dataset were mapped to the fields defined in ISO/TS 20428:2017 standard to evaluate compliance. RESULTS: A core dataset of 76 data elements, clustered into 6 categories was created to represent all key information of German MolGen reports. Based on this, a FHIR specification with 16 profiles, 14 derived from HL7®'s Genomics Reporting IG and 2 additional profiles (of the FamilyMemberHistory and RiskAssessment resources), was developed. Five example resource bundles show how our adaptation of an international standard can be used to model MolGen report data that was requested following oncological or rare disease indications. Furthermore, the map of the MolGen report data elements to the fields defined by the ISO/TC 20428:2017 standard, confirmed the presence of the majority of required fields. CONCLUSIONS: Our report serves as a template for other research initiatives attempting to create a standard format for unstructured genomic report data. Use of standard formats facilitates integration of genomic data into electronic health records for clinical decision support.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Nível Sete de Saúde , Registros Eletrônicos de Saúde , Genômica , Alemanha
16.
Br J Cancer ; 128(11): 2097-2103, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36973448

RESUMO

BACKGROUND: HPV-related cervical cancer (CC) is the fourth most frequent cancer in women worldwide. Cell-free tumour DNA is a potent biomarker to detect treatment response, residual disease, and relapse. We investigated the potential use of cell-free circulating HPV-DNA (cfHPV-DNA) in plasma of patients with CC. METHODS: cfHPV-DNA levels were measured using a highly sensitive next-generation sequencing-based approach targeting a panel of 13 high-risk HPV types. RESULTS: Sequencing was performed in 69 blood samples collected from 35 patients, of which 26 were treatment-naive when the first liquid biopsy sample was retrieved. cfHPV-DNA was successfully detected in 22/26 (85%) cases. A significant correlation between tumour burden and cfHPV-DNA levels was observed: cfHPV-DNA was detectable in all treatment-naive patients with advanced-stage disease (17/17, FIGO IB3-IVB) and in 5/9 patients with early-stage disease (FIGO IA-IB2). Sequential samples revealed a decrease of cfHPV-DNA levels in 7 patients corresponding treatment response and an increase in a patient with relapse. CONCLUSIONS: In this proof-of-concept study we demonstrated the potential of cfHPV-DNA as a biomarker for therapy monitoring in patients with primary and recurrent CC. Our findings facilitate the development of a sensitive and precise, non-invasive, inexpensive, and easily accessible tool in CC diagnosis, therapy monitoring and follow-up.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Recidiva Local de Neoplasia , Biomarcadores , Doença Crônica
17.
Neurooncol Adv ; 5(1): vdad012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915613

RESUMO

Background: The clinical utility of molecular profiling and targeted therapies for neuro-oncology patients outside of clinical trials is not established. We aimed at investigating feasibility and clinical utility of molecular profiling and targeted therapy in adult patients with advanced tumors in the nervous system within a prospective observational study. Methods: molecular tumor board (MTB)@ZPM (NCT03503149) is a prospective observational precision medicine study for patients with advanced tumors. After inclusion of patients, we performed comprehensive molecular profiling, formulated ranked biomarker-guided therapy recommendations based on consensus by the MTB, and collected prospective clinical outcome data. Results: Here, we present initial data of 661 adult patients with tumors of the nervous system enrolled by December 31, 2021. Of these, 408 patients were presented at the MTB. Molecular-instructed therapy recommendations could be made in 380/408 (93.1%) cases and were prioritized by evidence levels. Therapies were initiated in 86/380 (22.6%) cases until data cutoff. We observed a progression-free survival ratio >1.3 in 31.3% of patients. Conclusions: Our study supports the clinical utility of biomarker-guided therapies for neuro-oncology patients and indicates clinical benefit in a subset of patients. Our data might inform future clinical trials, translational studies, and even clinical care.

18.
Mol Genet Genomic Med ; 11(6): e2151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36760167

RESUMO

BACKGROUND: Lynch syndrome is one of the most common cancer predisposition syndromes. It is caused by inherited changes in the mismatch repair pathway. With current diagnostic approaches, a causative genetic variant can be found in less than 50% of cases. A correct diagnosis is important for ensuring that an appropriate surveillance program is used and that additional high-risk family members are identified. METHODS: We used clinical genome sequencing on DNA from blood and subsequent transcriptome sequencing for confirmation. Data were analyzed using the megSAP pipeline and classified according to basic criteria in diagnostic laboratories. Segregation analyses in family members were conducted via breakpoint PCR. RESULTS: We present a family with the clinical diagnosis of Lynch syndrome in which standard diagnostic tests, such as panel or exome sequencing, were unable to detect the underlying genetic variant. Genome sequencing in the index patient confirmed the previous diagnostic results and identified an additional complex rearrangement with intronic breakpoints involving MLH1 and its neighboring gene LRRFIP2. The previously undetected structural variant was classified as medically relevant. Segregation analysis in the family identified additional at-risk individuals which were offered intensified cancer screening. DISCUSSION AND CONCLUSIONS: This case illustrates the advantages of clinical genome sequencing in detecting structural variants compared with current diagnostic approaches. Although structural variants are rare in Lynch syndrome families, they seem to be underreported, in part because of technical challenges. Clinical genome sequencing offers a comprehensive genetic characterization detecting a wide range of genetic variants.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Sequência de Bases , Íntrons , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo
19.
J Cancer Res Clin Oncol ; 149(2): 833-840, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35192052

RESUMO

BACKGROUND: High tumor mutational burden (TMB) is associated with a favorable outcome in metastatic melanoma patients treated with immune checkpoint inhibitors. However, data are limited in the adjuvant setting. As BRAF mutated patients have an alternative with targeted adjuvant therapy, it is important to identify predictive factors for relapse and recurrence-free survival (RFS) in patients receiving adjuvant anti-PD-1 antibodies. METHODS: We evaluated 165 melanoma patients who started adjuvant anti-PD-1 antibody therapy at our center between March 2018 and September 2019. The initial tumor stage was assessed at the beginning of therapy according to the 8th edition of the AJCC Cancer Staging Manual. Tumor and normal tissue of the high-risk stages IIIC/D/IV were sequenced using a 700 gene NGS panel. RESULTS: The tumor stages at the beginning of adjuvant anti-PD-1 therapy were as follows: N = 80 stage IIIA/B (48%), N = 85 stage IIIC/D/IV (52%). 72/165 patients (44%) suffered a relapse, 44/72 (61%) with only loco regional and 28/72 (39%) with distant metastases. Sequencing results were available from 83 to 85 patients with stage IIIC/D/IV. BRAF mutation status (HR 2.12, 95% CI 1.12-4.08; p = 0.022) and TMB (HR 7.11, 95% CI 2.19-23.11; p = 0.001) were significant and independent predictive factors for relapse-free survival (RFS). CONCLUSION: BRAF mutation status and TMB were independent predictive factors for RFS. Patients with BRAF V600E/K mutation and TMB high had the best outcome. A classification based on BRAF mutation status and TMB is proposed to predict RFS in melanoma patients with adjuvant anti-PD-1 therapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Adjuvantes Imunológicos , Mutação
20.
J Med Genet ; 60(1): 48-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740919

RESUMO

BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.


Assuntos
Artrogripose , Humanos , Animais , Suínos , Mutação/genética , Artrogripose/genética , Artrogripose/patologia , Perda de Heterozigosidade , Feto , Fenótipo , Linhagem , Cinesinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...